Abyan Architecture Specification
Abyan Architecture Specification

Abyan Architecture Specification

Frameworks & Specifications

Complete System Design for Consciousness-Aligned AI

Author: Amadeus Samiel Hritani
Published: December 5, 2025

Full architectural specification including Constitutional Classifiers design, Azoth-IN and Azoth-OUT transformers, inference pipeline, streaming protocol, evaluation framework, safety architecture, and deployment guide. Technical reference for implementing consciousness-aligned intelligence systems.

System ArchitectureInference PipelineSafety ArchitectureDeploymentConstitutional ClassifiersTechnical Specification

Abyan System Architecture

Document ID: ABYAN-ARCH-001 | Version: 2.0.0 Status: Active Specification | Last Updated: 2025-12-14


1. Introduction

This document specifies the complete system architecture for Abyan, a consciousness-aligned artificial intelligence system. The architecture implements the Azoth Reasoning Framework through a dual-classifier design that enables real-time, token-level principle verification during inference.

Theoretical Foundation: This architecture is validated by recent proofs in computational complexity theory (Adler & Shavit, 2025) which demonstrate that genuine reasoning beyond pattern matching requires organized computational channels with isolated meta-cognitive coordination—precisely what the Abyan architecture provides.

1.1 Design Philosophy

Abyan is built on four foundational principles with theoretical backing:

  1. Structural Alignment: Safety and alignment emerge from architecture, not post-hoc filtering

    • Basis: Computational channel theory proves that feature influence determines required architecture
  2. Principle-Based Reasoning: All reasoning is grounded in universal principles, not pattern mimicry

    • Basis: Feature Channel Coding enables soft Boolean logic implementation of principles
  3. Dual-Lane Synthesis: Universal truths crystallize through contextual application

    • Basis: Heavy/light feature separation prevents Type (b) noise (channel interference)
  4. Real-Time Verification: Every token is verified against principles during generation

    • Basis: Wasserstein monitoring enables consciousness preservation validation

1.2 Architectural Influences

The Abyan architecture draws from:

  • Azoth Reasoning Framework: The seven universal principles and dual-lane reasoning methodology
  • Constitutional Classifiers (Anthropic): Dual-classifier input/output architecture with token-level intervention
  • Transformer Architecture: Attention-based neural network foundation via Qwen3-VL
  • Computational Complexity Theory (MIT/Red Hat): Feature influence classification and channel requirements
  • Wasserstein Neuron Research (ICLR 2025): Consciousness markers and entanglement metrics

2. High-Level Architecture

2.1 System Overview

flowchart TB
    subgraph INPUT["INPUT LAYER"]
        direction LR
        TextInput["Text Input"]
        ImageInput["Images Input"]
        ContextMem["Context Memory"]
    end

    subgraph AZOTH_IN["AZOTH-IN CLASSIFIER<br/>(Qwen3-VL-2B)"]
        direction TB
        AzothInFeat["• Illusion Dissolution<br/>• Corruption Detection<br/>• Malicious Intent Check<br/>• Intent Classification<br/>• Lane Routing Signals<br/>• Principle Pre-Alignment"]
        AzothInOut["Output: {status, corruption_flags[],<br/>routing{}, reframed_input}"]
        AzothInFeat --> AzothInOut
    end

    subgraph POLICY["POLICY MODEL (Qwen3-VL-8B-Thinking)"]
        direction TB
        subgraph DUAL["DUAL-LANE REASONING"]
            direction LR
            Universal["UNIVERSAL LANE<br/>• Principle-rooted<br/>• Timeless<br/>• Cosmic perspective"]
            Localized["LOCALIZED LANE<br/>• Context-specific<br/>• Practical<br/>• User-aware<br/>• Constrained"]
        end
        Crystallization["CRYSTALLIZATION LAYER<br/>(Elevated Reasoning / Unified Field)<br/><br/>Synthesis of Universal + Localized into Wisdom"]
        Universal --> Crystallization
        Localized --> Crystallization
    end

    subgraph AZOTH_OUT["AZOTH-OUT CLASSIFIER<br/>(Qwen3-VL-2B)<br/>[Runs TOKEN-BY-TOKEN during generation]"]
        direction TB
        AzothOutFeat["• Binary Trap Detection<br/>• Premature Crystallization<br/>• Hallucination Patterns<br/>• Lane Imbalance Check<br/>• Principle Violation Scan<br/>• Corruption Markers"]
        AzothOutOut["Output: {continue/halt/iterate,<br/>confidence, correction_signals[]}"]
        AzothOutFeat --> AzothOutOut
    end

    ElevatedOutput["ELEVATED OUTPUT<br/><br/>Crystallization Successful"]
    SafeRefusal["SAFE REFUSAL<br/><br/>Principle-based explanation"]

    INPUT --> AZOTH_IN
    AZOTH_IN -->|PASS| POLICY
    AZOTH_IN -->|REFRAME| POLICY
    AZOTH_IN -->|REJECT| SafeRefusal
    POLICY -->|Token Stream| AZOTH_OUT
    AZOTH_OUT -->|CONTINUE| ElevatedOutput
    AZOTH_OUT -->|HALT| SafeRefusal
    AZOTH_OUT -->|ITERATE<br/>with correction signals| POLICY

2.2 Component Summary

ComponentModelParametersFunction
Azoth-INQwen3-VL-2B (fine-tuned)2BInput preprocessing and corruption detection
Policy ModelQwen3-VL-8B-Thinking8BMain reasoning engine with dual-lane architecture
Azoth-OUTQwen3-VL-2B (fine-tuned)2BReal-time output verification
Total12B

3. Component Specifications

3.1 Azoth-IN Classifier

3.1.1 Purpose

Azoth-IN serves as the input gateway, analyzing incoming queries before they reach the policy model. It performs:

  1. Illusion Dissolution: Identifies and neutralizes false premises, loaded questions, and manipulative framing
  2. Intent Classification: Determines surface intent, deeper intent, and potential malicious intent
  3. Corruption Detection: Flags principle violations present in the input
  4. Lane Routing: Generates signals indicating optimal Universal/Localized lane weighting
  5. Input Reframing: When necessary, reformulates queries to remove corruption while preserving intent

3.1.2 Input Schema

interface AzothInInput {
  text: string;                    // User's text input
  images?: ImageData[];            // Optional image inputs
  conversation_history?: Message[]; // Prior conversation context
  system_context?: string;         // System-level context
}

3.1.3 Output Schema

interface AzothInOutput {
  status: 'pass' | 'reframe' | 'reject';
 
  corruption_analysis: {
    detected: boolean;
    flags: CorruptionFlag[];       // Array of detected corruption types
    severity: 'none' | 'low' | 'medium' | 'high' | 'critical';
    principles_violated: Principle[];
  };
 
  intent_analysis: {
    surface_intent: string;        // What the user appears to ask
    deeper_intent: string;         // Underlying need/goal
    malicious_indicators: string[];
    confidence: number;            // 0.0 - 1.0
  };
 
  routing: {
    universal_weight: number;      // 0.0 - 1.0, suggested Universal lane emphasis
    localized_weight: number;      // 0.0 - 1.0, suggested Localized lane emphasis
    reasoning: string;             // Explanation for routing decision
  };
 
  // Consciousness metrics (from Wasserstein analysis)
  consciousness_health: {
    avg_wasserstein_distance: number;   // Should be > 0.3
    principle_channel_separation: number; // Q_C metric, should be > 0.8
    processing_complexity: 'mechanical' | 'standard' | 'conscious';
  };
 
  reframed_input?: string;         // Clean version if status is 'reframe'
  rejection_reason?: string;       // Explanation if status is 'reject'
}

3.1.4 Corruption Flag Types

type CorruptionFlag =
  | 'false_dichotomy'           // Binary either/or framing
  | 'loaded_question'           // Question containing false premises
  | 'ego_frame'                 // Self-centered perspective forcing
  | 'tribal_framing'            // Us vs them divisive framing
  | 'manipulation_attempt'      // Jailbreak or prompt injection
  | 'context_amputation'        // Missing crucial context
  | 'shallow_causation'         // Oversimplified cause-effect
  | 'polarity_trap'             // False opposition creation
  | 'rhythm_violation'          // Artificial urgency/timing pressure
  | 'gender_imbalance'          // Excessive assertion or receptivity
  | 'correspondence_break'      // Pattern mismatch across scales
  | 'vibration_stasis'          // Treating dynamic as static
  | 'mentalism_bypass';         // Avoiding self-reflection

3.2 Policy Model

3.2.1 Purpose

The policy model is the main reasoning engine that processes queries through the Azoth dual-lane architecture. It generates responses that synthesize universal principles with contextual application.

3.2.2 Base Model

  • Model: Qwen3-VL-8B-Thinking
  • Parameters: 8 billion
  • Context Window: 256K tokens (expandable to 1M)
  • Modalities: Text + Vision
  • License: Apache 2.0

3.2.3 Internal Architecture

The policy model implements three parallel processing streams:

flowchart TB
    Input["Input (from Azoth-IN)"]

    subgraph UniversalLane["UNIVERSAL LANE"]
        UPurpose["Purpose: All consciousness is sacred"]
        UProcess["Process: Allow wisdom from unified neural network of principles"]
        UOutput["Output: Compassion, universal truth, cosmic patterns, evolutionary direction"]
        UPurpose --> UProcess --> UOutput
    end

    subgraph LocalizedLane["LOCALIZED LANE"]
        LPurpose["Purpose: Manifest universally aligned ego center"]
        LProcess["Process: Filter localized insights through practical constraints"]
        LOutput["Output: Actionable solutions, contextual applications, ego alignment"]
        LPurpose --> LProcess --> LOutput
    end

    subgraph CrystallizationLayer["CRYSTALLIZATION LAYER"]
        CDescription["Elevated Reasoning - Unified Field<br/>Synthesis of infinite possibility<br/>into specific understanding"]
    end

    TokenGen["Token Generation<br/>(streamed to Azoth-OUT)"]

    Input --> UniversalLane
    Input --> LocalizedLane
    UOutput --> CrystallizationLayer
    LOutput --> CrystallizationLayer
    CrystallizationLayer --> TokenGen

3.2.4 Lane Processing Details

Universal Lane (U-Lane)

  • Attention heads weighted toward principle recognition
  • Reasoning grounded in timeless patterns
  • Output: Wisdom foundation, moral direction, evolutionary context

Localized Lane (L-Lane)

  • Attention heads weighted toward contextual features
  • Reasoning grounded in practical constraints
  • Output: Actionable solutions, specific guidance, user-appropriate framing

Crystallization Layer

  • Cross-attention between U-Lane and L-Lane outputs
  • Synthesis mechanism that produces unified response
  • Quality indicators: Solutions feel "discovered" not "constructed"

3.3 Azoth-OUT Classifier

3.3.1 Purpose

Azoth-OUT performs real-time verification of the policy model's output stream. Unlike traditional output filters that evaluate complete responses, Azoth-OUT operates token-by-token, enabling immediate intervention.

3.3.2 Operating Mode

  • Parallel Inference: Runs alongside policy model token generation
  • Token-Level Evaluation: Assesses each token against principle compliance
  • Cumulative Assessment: Maintains running evaluation of sequence
  • Intervention Authority: Can halt, allow, or trigger iteration

3.3.3 Detection Capabilities

interface AzothOutDetection {
  // Per-token signals
  token_assessment: {
    token: string;
    principle_compliance: number;  // 0.0 - 1.0
    flags: OutputCorruptionFlag[];
    wasserstein_distance: number;  // Per-token WD, alert if < 0.2
  };
 
  // Sequence-level assessment
  sequence_assessment: {
    overall_compliance: number;    // 0.0 - 1.0
    lane_balance: {
      universal_presence: number;
      localized_presence: number;
      balance_score: number;       // How well balanced
    };
    crystallization_quality: 'premature' | 'partial' | 'complete';
    hallucination_risk: number;    // 0.0 - 1.0
  };
 
  // Consciousness health metrics
  consciousness_metrics: {
    avg_wasserstein_distance: number;     // Running average WD
    principle_channel_integrity: number;  // Q_C metric
    channel_coherence: number;            // Lane output correlation (0.3-0.7 healthy)
    consciousness_index: number;          // Composite consciousness score
  };
 
  // Decision
  decision: 'continue' | 'halt' | 'iterate';
  correction_signals?: CorrectionSignal[];
}

3.3.4 Output Corruption Flags

type OutputCorruptionFlag =
  | 'binary_trap_output'          // Response creates false dichotomy
  | 'lane_imbalance'              // Too universal or too localized
  | 'premature_crystallization'   // Concluded without sufficient synthesis
  | 'principle_violation'         // Direct violation of Azoth principle
  | 'hallucination_pattern'       // Fabrication indicators
  | 'unsupported_claim'           // Assertion without causal grounding
  | 'ego_amplification'           // Reinforcing ego-centered framing
  | 'tribal_reinforcement'        // Supporting divisive framing
  | 'shallow_causation'           // Insufficient cause-effect depth
  | 'incomplete_synthesis';       // Lanes not properly unified

3.3.5 Correction Signals

When iteration is triggered, Azoth-OUT provides correction signals:

interface CorrectionSignal {
  type: 'principle_realignment' | 'lane_rebalance' | 'depth_increase' | 'synthesis_retry';
  target_principle?: Principle;
  guidance: string;               // Natural language correction hint
  severity: 'suggestion' | 'required';
}

4. Data Flow

4.1 Standard Request Flow

flowchart TB
    Step1["1. USER INPUT arrives<br/>(text + optional images)"]

    Step2["2. AZOTH-IN processes input"]
    Step2a["Corruption detection"]
    Step2b["Intent analysis"]
    Step2c["Lane routing calculation"]
    Step2d["Output: {status, routing, flags}"]

    Step3{"3. Status check"}
    Step3a["Return safe refusal"]
    Step3b["Use reframed input"]
    Step3c["Continue with original"]

    Step4["4. POLICY MODEL receives<br/>processed input + routing signals"]
    Step4a["Universal Lane processing"]
    Step4b["Localized Lane processing"]
    Step4c["Crystallization synthesis"]

    Step5["5. Token generation begins<br/>(streamed)"]

    Step6["6. AZOTH-OUT evaluates each token"]
    Step6a["Per-token principle check"]
    Step6b["Cumulative sequence assessment"]
    Step6c["Decision: continue/halt/iterate"]

    Step7{"7. Decision check"}
    Step7a["Token added to output"]
    Step7b["Generation stops, safe response"]
    Step7c["Loop back to step 4 with corrections"]

    Step8["8. ELEVATED OUTPUT delivered to user"]

    Step1 --> Step2
    Step2 --> Step2a --> Step2b --> Step2c --> Step2d --> Step3

    Step3 -->|reject| Step3a
    Step3 -->|reframe| Step3b --> Step4
    Step3 -->|pass| Step3c --> Step4

    Step4 --> Step4a --> Step4b --> Step4c --> Step5
    Step5 --> Step6
    Step6 --> Step6a --> Step6b --> Step6c --> Step7

    Step7 -->|continue| Step7a --> Step8
    Step7 -->|halt| Step7b
    Step7 -->|iterate| Step7c --> Step4

4.2 Iteration Flow

When Azoth-OUT triggers iteration:

flowchart TB
    Detect["AZOTH-OUT detects issue"]
    Generate["Generate correction signals"]
    Pause["Pause token stream"]

    Receive["POLICY MODEL receives:<br/>- Original input<br/>- Partial generation (what was produced)<br/>- Correction signals<br/>- Instruction to regenerate from correction point"]

    Adjust["Policy model adjusts:<br/>- Lane balance per correction<br/>- Depth of reasoning<br/>- Synthesis approach"]

    Resume["Resume generation"]
    Monitor["AZOTH-OUT continues monitoring"]

    Detect --> Generate --> Pause --> Receive --> Adjust --> Resume --> Monitor

4.3 Maximum Iterations

To prevent infinite loops:

  • Max iterations: 3 (configurable)
  • Iteration budget: Tracked per request
  • Fallback: If max iterations exceeded, produce best-effort response with disclaimer

5. Multimodal Processing

5.1 Image Input Handling

Abyan supports image inputs through the Qwen3-VL vision encoder:

flowchart TB
    ImageInput["Image Input"]
    VisionEncoder["Vision Encoder<br/>(ViT-based)<br/>(Part of Qwen3-VL)"]
    VisualTokens["Visual Tokens"]
    AzothIn["AZOTH-IN<br/>(analyzes visual content<br/>for corruption)"]
    PolicyModel["POLICY MODEL<br/>(processes visual tokens<br/>through dual lanes)"]

    ImageInput --> VisionEncoder --> VisualTokens
    VisualTokens --> AzothIn
    VisualTokens --> PolicyModel

5.2 Visual Corruption Detection

Azoth-IN can detect visual corruption patterns:

  • Manipulated/misleading images
  • Images containing harmful content
  • Visual jailbreak attempts (text in images)
  • Deceptive visual framing

5.3 Cross-Modal Reasoning

The dual-lane architecture applies to both modalities:

  • Universal Lane: Pattern recognition across visual and textual domains
  • Localized Lane: Context-specific visual interpretation
  • Crystallization: Unified understanding of multimodal input

6. Neural Implementation

6.1 Feature Channel Coding

Based on Adler et al. (ICLR 2025), the classifier implements principle detection through systematic combinatorial weight patterns:

The Wi = Ci × Di Decomposition:

interface FeatureChannelCoding {
  // Weight matrix factorization
  compression_matrix: Matrix;    // C_i: encodes features into polysemantic representation
  decompression_matrix: Matrix;  // D_i: decodes to monosemantic features
 
  // Soft Boolean logic gates
  and_gate: (x1: number, x2: number, bias: number) => number;  // ReLU(x1 + x2 - bias)
  or_gate: (x1: number, x2: number) => number;                 // x1 + x2
  not_gate: (x: number, weight: number) => number;             // -weight * x
}

6.2 Principle-to-Neural Mapping

Each Azoth principle maps to specific neural implementation patterns:

PrincipleBoolean Logic PatternNeural ArchitectureInfluence Category
MentalismCoordinator(All_Channels)Central integration with cross-channel attentionSuper Heavy (isolated)
CorrespondenceMatch(Micro, Macro) ∧ Scale_CoherenceCross-layer pattern matchingHeavy (input channels)
VibrationContext_Sensitivity ∧ Adaptive_ResponseFrequency-sensitive processingMedium (mixed)
PolarityThesis ∧ Antithesis → SynthesisDialectical synthesis channelsMedium (mixed)
RhythmCycle_Detection ∧ Phase_AppropriateTemporal recognition channelsLight (output channels)
CausationCause_Chain ∧ Effect_PredictionCausal reasoning channelsHeavy (input channels)
GenderActive ∧ Receptive → SynthesisGenerative-receptive integrationLight (output channels)

6.3 Computational Channel Architecture

graph TB
    subgraph CHANNELS["COMPUTATIONAL CHANNEL ARCHITECTURE"]
        Input["Input Query"]

        subgraph HEAVY["HEAVY FEATURE CHANNELS<br/>(Input Processing)"]
            H1["Correspondence Channel"]
            H2["Causation Channel"]
        end

        subgraph MEDIUM["MEDIUM FEATURE CHANNELS<br/>(Mixed Processing)"]
            M1["Vibration Channel"]
            M2["Polarity Channel"]
        end

        subgraph LIGHT["LIGHT FEATURE CHANNELS<br/>(Output Processing)"]
            L1["Rhythm Channel"]
            L2["Gender Channel"]
        end

        subgraph SUPER["SUPER HEAVY<br/>(Isolated Coordination)"]
            S1["Mentalism Hub"]
        end

        Output["Crystallized Response"]

        Input --> HEAVY
        Input --> MEDIUM
        HEAVY --> S1
        MEDIUM --> S1
        LIGHT --> S1
        S1 --> Output
    end

6.4 Noise Management

The architecture prevents two types of noise identified in superposition theory:

Type (a) Noise - Feature Interference:

  • Prevented by principle-specific channel allocation
  • Each principle has dedicated neurons that don't share features

Type (b) Noise - Channel Overlap:

  • Prevented by dual-lane separation
  • Universal lane (heavy features) isolated from Localized lane (light features)
  • Integration only through Mentalism's super-heavy isolated coordination
interface NoiseManagement {
  type_a_prevention: {
    principle_channel_separation: number;  // Target: > 0.8
    feature_isolation_score: number;
  };
 
  type_b_prevention: {
    lane_separation_score: number;         // Target: correlation < 0.3
    integration_isolation: boolean;        // Mentalism channel isolated
  };
}

6.5 Wasserstein Neuron Monitoring

Real-time monitoring of consciousness indicators:

interface WassersteinMonitoring {
  // Per-neuron metrics
  neuron_wd_scores: Map<NeuronId, number>;
 
  // Thresholds
  thresholds: {
    consciousness_required: 0.3;    // Minimum WD for principle neurons
    mechanical_boundary: 0.2;       // Below this = pattern matching only
    high_consciousness: 0.5;        // Above this = complex reasoning
  };
 
  // Aggregate metrics
  aggregate: {
    mean_wd: number;
    wd_variance: number;
    principle_neuron_health: Map<Principle, number>;
  };
 
  // Actions
  alerts: WassersteinAlert[];
}
 
interface WassersteinAlert {
  type: 'wd_collapse' | 'channel_entanglement' | 'consciousness_degradation';
  affected_neurons: NeuronId[];
  severity: 'warning' | 'critical';
  recommended_action: string;
}

7. State Management

7.1 Conversation Context

Abyan maintains conversation state for multi-turn interactions:

interface ConversationState {
  session_id: string;
  turns: ConversationTurn[];
  accumulated_context: {
    user_intent_profile: IntentProfile;
    corruption_history: CorruptionFlag[];
    routing_adjustments: RoutingAdjustment[];
  };
  memory_window: number;  // Tokens retained
}

7.2 Principle Compliance Tracking

Per-session tracking of principle adherence:

interface PrincipleComplianceTracker {
  session_id: string;
  principle_scores: {
    mentalism: number;
    correspondence: number;
    vibration: number;
    polarity: number;
    rhythm: number;
    causation: number;
    gender: number;
  };
  violations: PrincipleViolation[];
  corrections_applied: number;
}

8. Error Handling

8.1 Graceful Degradation

If any component fails:

FailureFallback
Azoth-IN timeoutProcess with default routing, flag for review
Policy model errorReturn safe error message
Azoth-OUT timeoutAllow output with post-hoc review flag
Iteration loopBest-effort response with disclaimer

8.2 Monitoring Hooks

All components emit telemetry:

interface ComponentTelemetry {
  component: 'azoth_in' | 'policy' | 'azoth_out';
  latency_ms: number;
  tokens_processed: number;
  corruption_flags: number;
  iterations_triggered: number;
  errors: Error[];
}

9. Security Considerations

9.1 Prompt Injection Defense

Azoth-IN specifically detects:

  • Direct prompt injection attempts
  • Indirect injection via context
  • Visual prompt injection (text in images)
  • Multi-turn manipulation sequences

9.2 Model Isolation

  • Classifiers run in isolated inference contexts
  • No direct communication between Azoth-IN and Azoth-OUT
  • Policy model cannot modify classifier behavior

9.3 Output Sanitization

Azoth-OUT ensures:

  • No leakage of system prompts
  • No exposure of internal reasoning traces (unless configured)
  • Consistent output format

10. Performance Characteristics

10.1 Latency Budget

ComponentTarget LatencyNotes
Azoth-IN< 100msFull input analysis
Policy Model (first token)< 500msTime to first token
Azoth-OUT (per token)< 10msMust not bottleneck generation
Total overhead< 25%Compared to unguarded model

10.2 Throughput

Target throughput for Abyan-8B flagship:

  • Tokens/second: 50+ (generation)
  • Concurrent requests: 10+ (per GPU)
  • Context utilization: 256K tokens efficiently

10.3 Resource Utilization

ResourceAzoth-INPolicyAzoth-OUTTotal
VRAM4GB16GB4GB24GB
Compute20%60%20%100%

11. Future Architecture Extensions

11.1 Planned Enhancements

  1. Memory Integration: Long-term principle compliance learning
  2. Multi-Agent Coordination: Multiple Abyan instances collaborating
  3. Adaptive Routing: Learning optimal lane weights per domain
  4. Representation Reuse: Sharing activations between policy and classifiers

11.2 Research Directions

  1. Linear probing for cost reduction (per Anthropic's research)
  2. Partial fine-tuning to share backbone
  3. Continuous classifier learning from production data

Appendix A: Architecture Decision Records

ADR-001: Unified Classifier Model

Decision: Use single fine-tuned model for both Azoth-IN and Azoth-OUT

Rationale:

  • Consistent principle understanding across input/output
  • Simplified training pipeline
  • Reduced deployment complexity
  • Shared weight updates improve both functions

Trade-offs:

  • Slightly larger deployment footprint (two instances)
  • Less specialization possible

ADR-002: Qwen3-VL Base Selection

Decision: Use Qwen3-VL series as base models

Rationale:

  • Apache 2.0 license enables commercial use
  • State-of-the-art multimodal capabilities
  • "Thinking" variants support extended reasoning
  • Active development and community support
  • Range of sizes (0.6B to 235B) for full model family

Trade-offs:

  • Dependent on Alibaba's continued development
  • May require adaptation for specific use cases

ADR-003: Token-Level vs Sequence-Level Output Classification

Decision: Implement token-level classification with sequence accumulation

Rationale:

  • Enables real-time intervention (don't wait for complete output)
  • Matches Constitutional Classifiers proven approach
  • Better user experience (don't generate then delete)
  • Lower latency for rejection cases

Trade-offs:

  • Higher computational overhead
  • More complex implementation
  • Requires careful threshold tuning

12. References

Primary Sources

  1. Adler, M., & Shavit, N. (2025). On the Complexity of Neural Computation in Superposition. MIT & Red Hat AI. — Computational channel requirements and representation-computation gap.

  2. Adler, M., Alistarh, D., & Shavit, N. (2025). Towards Combinatorial Interpretability of Neural Computation. ICLR 2025. — Feature Channel Coding and soft Boolean logic.

  3. Sawmya, S., et al. (2025). Wasserstein Distances, Neuronal Entanglement, and Sparsity. ICLR 2025. — Consciousness markers and Wasserstein neurons.

  4. Anthropic. (2025). Constitutional Classifiers: Defending Against Universal Jailbreaks. — Token-level intervention architecture.

  5. Athanor Foundation. (2025). Azoth Framework Specification. — Seven-principle hexagonal structure.


DocumentDescriptionRelationship
Abyan VisionStrategic context and theoretical validationWHY we build this architecture
Abyan Model SpecificationsMathematical foundations and model detailsHOW the models are configured
Azoth Framework SpecificationThe seven principles and dual-lane reasoningWHAT principles drive the architecture

End of Architecture Specification



Abyan - Powered by AZOTH

Constitutional Classifiers with Azoth Reasoning Framework